Computational problems in supersingular elliptic curve isogenies
نویسندگان
چکیده
We give a brief survey of elliptic curve isogenies and the computational problems relevant for supersingular isogeny crypto. Supersingular isogeny cryptography is attracting attention due to the fact that there are no quantum attacks known against it that are significantly faster than classical attacks. However, the underlying computational problems have not been sufficiently studied by quantum algorithms researchers, especially since there are significant mathematical preliminaries needed to fully understand isogeny crypto. The main goal of the paper is to advertise various related computational problems, and to explain the relationships between them, in a way that is accessible to experts in quantum algorithms.
منابع مشابه
Diffie-Hellman type key exchange protocols based on isogenies
In this paper, we propose some Diffie-Hellman type key exchange protocols using isogenies of elliptic curves. The first method which uses the endomorphism ring of an ordinary elliptic curve $ E $, is a straightforward generalization of elliptic curve Diffie-Hellman key exchange. The method uses commutativity of the endomorphism ring $ End(E) $. Then using dual isogenies, we propose...
متن کاملQuantum-Resistant Diffie-Hellman Key Exchange from Supersingular Elliptic Curve Isogenies
Possibility of the emergence of quantum computers in the near future, pose a serious threat against the security of widely-used public key cryptosystems such as RSA or Elliptic Curve Cryptography (ECC). Algorithms involving isogeny computations on supersingular elliptic curves have been shown to be difficult to break, even to quantum computers. Thus, isogeny-based protocols represent promising ...
متن کاملTowards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies
We present new candidates for quantum-resistant public-key cryptosystems based on the conjectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea in our scheme is that we transmit the images of torsion bases under the isogeny in order to allow the two parties to arrive at a common shared key despite the noncommutativity of the endomorphism ring. Ou...
متن کاملIsogenies of Supersingular Elliptic Curves over Finite Fields and Operations in Elliptic Cohomology
In this paper we investigate stable operations in supersingular elliptic cohomology using isogenies of supersingular elliptic curves over nite elds. Our main results provide a framework in which we give a conceptually simple new proof of an elliptic cohomology version of the Morava change of rings theorem and also gives models for explicit stable operations in terms of isogenies and morphisms i...
متن کاملOn the Hardness of Computing Endomorphism Rings of Supersingular Elliptic Curves
Cryptosystems based on supersingular isogenies have been proposed recently for use in post-quantum cryptography. Three problems have emerged related to their hardness: computing an isogeny between two curves, computing the endomorphism ring of a curve, and computing a maximal order associated to it. While some of these problems are believed to be polynomial-time equivalent based on heuristics, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017